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Abstract. The electromagnetically induced transparency (EIT) with a (near-)resonant chaotic (amplitude-
phase fluctuating, Gaussian-Markovian) coupling field is studied theoretically. The Fourier transform of
the steady-state EIT spectrum, which determines a nonstationary probe absorption, is also considered.
This quantity equals the average diagonal element of the (reduced) evolution operator of the coupled
transition (the evolution function). The exact solution in the form of a continued fraction is obtained
and used to perform numerical calculations. Moreover, a number of approximate analytical results are
obtained, which, together with the results of previous publications, describe the EIT and the evolution
function in all possible regimes. In particular, in the constructive-interference case the EIT increases with
the coupling-field bandwidth ν at sufficiently small ν. For a strong field, the maximum of the transparency
as a function of ν is less than that for a monochromatic field of the same average intensity. In contrast,
for a weak field, there is a range of ν values, where the field fluctuations do not affect the EIT. The latter
result is shown to hold for a broad class of stochastic fields.

PACS. 42.50.Gy Effects of atomic coherence on propagation, absorption, and amplification of light –
42.50.Md Optical transient phenomena: quantum beats, photon echo, free-induction decay, dephasings
and revivals, optical nutation, and self-induced transparency – 42.60.Mi Dynamical laser instabilities;
noisy laser behavior

1 Introduction

The electromagnetically induced transparency (EIT) is a
nonlinear optical phenomenon, involving quantum inter-
ference [1], which is of significant interest for both the fun-
damental science and the applied research [2]. Generally,
the stronger the field producing the EIT the better the
transparency. Since powerful lasers are often noisy, stud-
ies of effects of random fluctuations on the EIT are war-
ranted. In comparison to Markovian phase fluctuations,
which are well studied [3,4], the effects of amplitude-phase
fluctuations on the EIT are less understood, though they
are generally more significant and diverse [3,5–10].

Two related quantities are studied here. The first quan-
tity is the steady-state EIT with an amplitude-phase fluc-
tuating coupling field. The field is assumed to be chaotic,
i.e., its amplitude is a complex Gaussian-Markovian pro-
cess. The second quantity is the Fourier transform of the
EIT spectrum (the evolution function). This function de-
termines the absorption of a time-dependent probe field
and, moreover, has the meaning of the average diagonal el-
ement of the (reduced) evolution operator of of a two-level
system driven by a chaotic field [10] (the average nondi-
agonal elements of the evolution operator will be shown
to vanish).
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The present problem involves five parameters: the
coupling-field rms Rabi frequency, bandwidth, and de-
tuning, and two relaxation constants. Four of the above
parameters are independent (the fifth one defines the
time and frequency scales). Correspondingly, many quali-
tatively different regimes are possible. Though some of the
present results hold for an arbitrary coupling-field detun-
ing, here the attention is focused on the (near-)resonance
case, where the detuning vanishes or is relatively small.
This reduces the number of independent parameters to
three, the problem still remaining complicated.

Recently we studied the EIT in different regimes: the
destructive-interference [8], constructive-interference [9],
and relaxationless [10] cases. However, the previous stud-
ies were not complete. In particular, reference [9] is a pre-
liminary report, which omits a number of interesting cases
and necessary derivations, whereas the evolution func-
tion was not discussed in references [8,9]. Moreover, in
reference [10] the validity conditions of the results were
not obtained.

The purpose of the present study is twofold. First, the
exact solution in the form of a continued fraction will
be derived. Second, we shall obtain approximate analyt-
ical solutions for all unsolved cases and thus provide the
comprehensive picture for the behaviour of the EIT and
the evolution function in the (near-)resonance case. In
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particular, we shall find the necessary and sufficient con-
ditions for all regimes. Numerical calculations, using the
above continued fraction, will be performed to corroborate
the analytical results and to obtain the crossover between
different regimes.

The constructive-interference case is given here a spe-
cial consideration. In this case, a strong coupling field is
known to induce a relatively narrow spectral peak between
the components of the Autler-Towns doublet1 [9]. More-
over, the following remarkable features are revealed below.
(a) The EIT increases with the bandwidth for sufficiently
narrowband coupling fields. (b) For a weak coupling field
there is a range of the values of the bandwidth, where
the field fluctuations do not affect the EIT spectrum and
the evolution function, i.e., the random field behaves as a
monochromatic one.

The emphasis below is made on the new results, the
previous results being mentioned briefly where it is nec-
essary. The paper is organized as follows. In Section 2
the general formalism is presented. Section 3 provides the
derivation of the continued-fraction solution. In Section 4
we present analytical results for the limiting cases of
narrow- and broadband fields and show the applicability of
these results to stochastic models more general than the
chaotic field. An analytical solution for the constructive
interference case is obtained in Section 5. In Section 6 we
discuss analytical and numerical results for the EIT and
the evolution function in various regimes. Section 7 pro-
vides the concluding remarks. Two appendices describe
details of calculations.

2 Formulation of the problem

Consider a three-level atom with the ground state |g〉 and
the excited states |a〉 and |b〉. The electromagnetically in-
duced transparency (EIT) is observed in the absorption
spectrum of a weak probe field near-resonant to the dipole-
allowed transition |g〉 − |a〉, whereas |a〉 and |b〉 are cou-
pled by a strong laser field Ec(t)e−iωct + c.c. with the fre-
quency ωc and the amplitude Ec(t). The excited levels |a〉
and |b〉 are assumed to be empty in the absence of the
probe field.

The probe field with the frequency ω and the ampli-
tude Ep(t) induces the polarization (the dipole moment
per unit volume) P (t)e−iωt + P ∗(t)eiωt. As shown in [8],
the average polarization amplitude is

P̄ (t) =
iN |dag|2
~

∫ t

0

dt′ei∆(t−t′)Ūaa(t− t′)Ep(t′), (2.1)

which implies that the steady-state absorption spectrum
for a cw probe field [Ep(t) = const.] is given by

Ā(∆) = Re
∫ ∞

0

dt Ūaa(t)ei∆t. (2.2)

1 Similar three-peak lineshapes were found for double op-
tical resonance with an intensity fluctuating field [11] and for
normal-mode line shapes of high-Q cavities, wherein the source
of fluctuations is the intracavity atomic number [12].

Here ∆ = ω−ωag is the probe field detuning, the overbar
denotes averaging over random fluctuations of the cou-
pling field, N is the number of the atoms under consider-
ation per unit volume, dij is the dipole matrix element for
transition |i〉−|j〉, and Ā(∆) = ᾱ(ω)/K is the scaled aver-
age absorption coefficient, where ωij = ωi−ωj , ~ωi is the
energy of level |i〉, ᾱ(ω) is the average absorption coeffi-
cient, and K = 4πNω|dag|2/(~c) with c being the vacuum
speed of light. Equation (2.2) holds if ᾱ(ω)L� 1, where L
is the sample thickness along the propagation direction of
the probe field [8]. For definiteness, below we consider the
ladder scheme (ωb > ωa). The results for the Λ-scheme
(ωb < ωa) follow from those for the ladder scheme with
the help of the substitutions (2.14) in [8].

The quantity Ūaa(t) is the averaged solution of the
Schrödinger equation [3,8]

iU̇ =
(
−iΓ V ∗c (t)
Vc(t) −∆c − iΓ ′

)
U (2.3)

for the operator Uij(t) with the initial condition Uij(0) =
δij , where i, j = a, b and δij is the Kronecker symbol. In
equation (2.3) Vc(t) = −dbaEc(t)/~ and ∆c = ωc − ωba
is the coupling-field detuning, whereas Γ and Γ ′ are the
homogeneous HWHM widths of the transitions |g〉 − |a〉
and |g〉 − |b〉, respectively.

Note that equation (2.3) results from the equations for
the density matrix elements ρag and ρbg [8]. Since in the
present weak-probe approximation the amplitude of |g〉 is
close to one, ρag and ρbg behave as the amplitudes of |a〉
and |b〉. This explains why equation (2.3) has the form of
the Schrödinger equation.

As discussed in [10], U(t) is generally the operator of
the reduced evolution of the TLS {|a〉, |b〉} (i.e., the evo-
lution of the subensemble with no spontaneous transitions
between |a〉 and |b〉 [13]) averaged over collision-induced
random phase shifts. In those cases, when the rates of
the above spontaneous transitions and the dephasing col-
lisions are negligible small, U(t) is just the evolution op-
erator of the above TLS.

Thus, equation (2.2) establishes the relation between
the EIT spectrum and the evolution of TLS {|a〉, |b〉}. Con-
versely, the evolution function Ūaa(t) can be expressed
through the EIT spectrum [10],

Ūaa(t) =
1
π

∫ ∞
−∞

Ā(∆)e−i∆td∆. (2.4)

Relations (2.2) and (2.4) allow us to study the EIT and
the average evolution of the TLS simultaneously below.

Note that Ūaa(t) is of interest both in its own right and
because it directly defines the absorption rate of the probe
field when Ep(t) depends on time. The latter follows from
equation (2.1) and the fact that the average absorption
rate is proportional to ImE∗p(t)P̄ (t) [14].

Henceforth we consider a chaotic coupling field, i.e.,
a complex Gaussian-Markovian random process Ec(t)
or Vc(t). Chaotic field has the vanishing average and an
exponential correlation function, k(t) ≡ V ∗c (t+ τ)Vc(τ) =
V 2

0 e−ν|t|, where V0 is the rms Rabi frequency, V 2
0 = |Vc|2,
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and ν−1 is the correlation time of the coupling field. Cor-
respondingly, the coupling-field bandshape is Lorentzian
with the HWHM width ν. The complex coupling ampli-
tude Vc = u+ iv of the chaotic field has a Gaussian distri-
bution dW (V) = f(V )dV. Here V = (u, v), dV = dudv,
V = |Vc| is the Rabi frequency of the chaotic field, and

f(V ) = exp(−V 2/V 2
0 )/πV 2

0 . (2.5)

Consider the partially averaged evolution operatorU(V, t)
[8]. The Laplace transforms Ψi(V) =

∫∞
0
Uia(V, t)ei∆tdt

(i = a, b) satisfy the following equations [8],

−Γ̃Ψa − iV ∗c Ψb + LΨa = −f(V ), (2.6a)

−Γ̃ ′Ψb − iVcΨa + LΨb = 0, (2.6b)

Here Γ̃ = Γ − i∆, Γ̃ ′ = Γ ′ − i∆′, where ∆′ = ∆ + ∆c,
and the stochastic operator L = Lu + Lv takes into ac-
count temporal fluctuations of the coupling field, where Lu
and Lv are defined by

Lu = ν

(
1 + u

∂

∂u
+
V 2

0

2
∂2

∂u2

)
· (2.7)

The fully averaged quantity

Ψ̄i =
∫
Ψi(V)dV =

∫ ∞
0

Ūia(t)ei∆tdt. (2.8)

The probe absorption spectrum can be written now as

Ā(∆) = ReΨ̄a. (2.9)

3 Continued-fraction solution

The average solution of equation (2.3) can be ob-
tained with the help of the generalized cumulant expan-
sion [15–17]. As a result, one obtains for a chaotic Vc(t)
that

Ūba(t) = Ūab(t) = 0, (3.1)

whereas the Laplace transform

ˆ̄Uaa(s) =
∫ ∞

0

dt e−stŪaa(t) (3.2)

of Ūaa(t) is given by

ˆ̄Uaa(s) =

[
s+ Γ +

∞∑
k=1

(−1)k+1Qk(s)

]−1

. (3.3a)

Here

Qk(s) =
∫ ∞

0

dτ1...
∫ ∞

0

dτ2k−1 exp

[
−

2k−1∑
i=1

(s+ pi)τi

]
× dk(τ1 + ...+ τ2k−1, ..., τ1, 0), (3.3b)

where p2j = Γ , p2j−1 = Γ ′ − i∆c ≡ Γc (j = 1, 2, ...), and
dk(t1, ..., t2k) = PV ∗1 V2QV

∗
3 V4...QV

∗
2k−1V2k. Here P is the

averaging operator, Q = 1− P , and Vj = V (tj).
In particular, for the chaotic field d1 = V 2

0 κ11,
d2 = V 4

0 κ11κ22κ13, d3 = V 6
0 κ11κ22(κ13 + 2κ33)κ24κ15,

d4 = V 8
0 κ11κ22(κ13κ24κ15 + 2κ33κ24κ15 + 2κ13κ24κ35 +

4κ33κ24κ35 + 4κ33κ44κ35)κ26κ17, where κjk = e−jντk and
τk = tk − tk+1. Hence

Q1(s)=V 2
0 b1, Q2(s) = V 4

0 b1a2,

Q3(s)=V 6
0 b

2
1a

2
2(b1 + 2b3),

Q4(s)=V 8
0 b

2
1a

2
2(b21a2+4b1a2b3 + 4b23a2 + 4b23a4),(3.4)

where an = (s+ Γ + nν)−1 and bn = (s+ Γc + nν)−1.
To recast the expansion (3.3a) as a continued fraction,

we note that in the case

Γ = Γ ′ = ∆c = 0 (3.5)

the relaxation function Ūaa(t) can be shown to coincide,
up to a renormalization of V0, with the average popula-
tion difference n̄(t) of a TLS driven by a chaotic field [18].
Correspondingly, the cumulant expansions for the Laplace
transforms of Ūaa(t) (Eqs. (3.3a) and (3.4)) and n̄(t) [19]
are similar. In the general case, the above two quanti-
ties behave quite differently: n̄(t) is always real, whereas
Ūaa(t) can be complex. However, the form of the two
expansions is preserved, by continuity, also for the gen-
eral case. Indeed, expansion (3.3a) and (3.4) and that in
reference [19] can be formally identified if the parameters
ĉn and ûn introduced in [19] are redefined by ĉn = ibn
and ûn = ian. This allows us to use the continued fraction
given by equations (4.5–4.8) in [19] for the summation of
expansion (3.3a) and (3.4). As a result, Ψ̄a = ˆ̄Uaa(−i∆)
(see Eq. (2.8)) is given by

Ψ̄a = (Γ̃ +D1)−1, (3.6a)

where (n = 1, 2, ...)

Dn =
V 2

0

Γ̃ ′ + (2n− 1)ν + V 2
0 /(Γ̃ + 2nν +Dn+1)

· (3.6b)

In view of equations (2.9, 2.4), the continued fraction (3.6)
allows one to compute the EIT spectrum and the evolution
function Ūaa(t) for all possible values of the parameters.

Below we focus on the case of a moderate detuning,

|∆c| . Γ + Γ ′. (3.7)

We shall assume also that

V 2
0 & ΓΓ ′, (3.8)

which is a necessary condition for the probe absorption to
be significantly modified by the coupling field [8].

4 Limiting cases

In the limiting cases of very narrow- and broadband fields
one can obtain analytical results, whose applicability is
much broader than the chaotic field model, as noted below.
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4.1 Static limit

4.1.1 EIT

For a very narrowband field, ν → 0, one can neglect LΨa in
equations (2.6) and solve the resulting algebraic equations
to obtain [8]

Ā(∆) = V −2
0 ReΓ̃ ′eΓ̃ Γ̃

′/V 2
0 E1(Γ̃ Γ̃ ′/V 2

0 ), (4.1)

where E1() is the integral exponential function [20].
In the case (3.5) the spectrum (4.1) is the broadened
Autler-Towns doublet [3,5,10],

Ā(∆) = πV −2
0 |∆| exp(−∆2/V 2

0 ). (4.2)

4.1.2 TLS evolution

For a coherent coupling field, Vc(t) = const., a solution of
equation (2.3) yields,

Uaa(t) = exp
(
−Γ + Γc

2
t

)(
cosΩt+

Γd

2Ω
sinΩt

)
,

(4.3)

where Γd = Γc − Γ and Ω =
√
V 2 − Γ 2

d/4. In the static
limit, Ū st

aa(t) =
∫
Uaa(t)f(V)dV. Inserting equation (4.3)

here and performing the integration yields, after some al-
gebra,

Ū st
aa(t) = e−Γt+e−Γct

2 −
(
V0t
2 −

Γd
2V0

)
×
[
e−ΓtF

(
V0t
2 + Γd

2V0

)
+e−ΓctF

(
V0t
2 −

Γd
2V0

)]
, (4.4)

where [20] F (z) = e−z
2 ∫ z

0
dy ey

2
.

For the case (3.5) equation (4.4) becomes [5]

Ū st
aa(t) = 1− V0tF (V0t/2). (4.5)

This function has the following limits [10]: Ū st
aa(t) ≈ 1 −

V 2
0 t

2/2 (t� V −1
0 ) and Ū st

aa(t) ≈ −2/V 2
0 t

2 (t� V −1
0 ).

Note that the results of the static limit hold in the
limit ν → 0 for any intensity-fluctuating field with the
distribution (2.5).

4.2 Broadband limit

In this subsection we consider a rather general class of
phase, amplitude, and amplitude-phase fluctuating fields,
as specified below.

We start by noting that equation (3.3) holds for any
stochastic field with vanishing odd moments. As follows
from the above definition of the cumulant dk(τ1 + ... +
τ2k−1, ..., τ1, 0), it tends to zero for each τi tending to in-
finity. Assuming that this decay occurs exponentially or
faster with the rate of the order of the field bandwidth ν,

as is the case for a chaotic field (cf. Sect. 3), one can esti-
mate that

|Qk(s)| ∼ V 2k
0 /|(s+ Γ + ν)k−1(s+ Γc + ν)k|. (4.6)

The series in equation (3.3a) converges fast when
|Qk+1(s)|/|Qk(s)| ∼ V 2

0 /|(s + Γ + ν)(s + Γc + ν)| � 1.
We are interested in the case of an imaginary s = −i∆,
when the spectrum Ā(∆) = Re ˆ̄Uaa(−i∆) is obtained. In
the region (3.7), the above ratio is maximal when ∆ = 0,
yielding the condition V 2

0 � (Γ + ν)(Γ ′ + ν). Restricting
our attention to the case (3.8), the latter condition can be
recast as

V 2
0 � ν(Γ + Γ ′ + ν). (4.7)

Under condition (4.7), one can approximate the sum
in equation (3.3a) by its first term, yielding in the first
approximation

Ā(∆) = Re[Γ̃ + k̂(Γ̃ ′)]−1, (4.8)

where k̂(s) is the Laplace transform of the correlation
function k(t) = V ∗c (t)Vc(0). Inequality (4.7) implies that
the main part of the EIT spectrum (4.8), except for far
wings, is Lorentzian,

Ā(∆) =
Γ + w

(Γ + w)2 + (∆− δ)2
(|∆| � ν + Γ ′), (4.9)

where w = Rek̂(Γc) and δ = Imk̂(Γc) are the field-induced
spectral width and shift.

The spectrum simplifies in two cases. For ν � Γ ′,
one can set in equation (4.8) k̂(Γ̃ ′) ≈ k̂(−i∆). As regards
equation (4.9), one obtains w ≈ k̂(0) ≡ V 2

0 /ν (the latter
equality defining ν for the general case), whereas |δ| ∼
V 2

0 |∆c|/ν2 � w, yielding

Ā(∆) =
Γ + V 2

0 /ν

(Γ + V 2
0 /ν)2 +∆2

(|∆| � ν). (4.10)

For ν � Γ ′ one obtains k̂(Γ̃ ′) ≈ V 2
0 /Γ̃

′ and equation (4.8)
becomes

Ā(∆) = Re[Γ − i∆+ V 2
0 /(Γ

′ − i∆′)]−1. (4.11)

The main part (|∆| � Γ ′) of the spectrum (4.11) is
Lorentzian, equation (4.9), with w = V 2

0 Γ
′/(Γ

′2 + ∆2
c)

and δ = V 2
0 ∆c/(Γ

′2 +∆2
c). In this case, a stochastic cou-

pling field affects the spectrum in the same manner as a
monochromatic field with the same average intensity. As
follows from equations (3.8) and (4.7), the above regime
holds for Γ � Γ ′ and V 2

0 � νΓ ′.
For a field with a Lorentzian bandshape, as, e.g., a

chaotic field, the spectrum (4.8) acquires the form

Ā(∆) = Re[Γ − i∆+ V 2
0 /(Γ

′ + ν − i∆′)]−1. (4.12)

This spectrum is the same as for a field with Markovian
phase fluctuations [3,4,8]. The main part of the spectrum
has the form (4.9) with

w =
V 2

0 (ν + Γ ′)
(ν + Γ ′)2 +∆2

c

, δ =
V 2

0 ∆c

(ν + Γ ′)2 +∆2
c

· (4.13)
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The expansion (3.3) can be used also to obtain far
wings of the spectrum for the general case, irrespective
of condition (4.7). In particular, for the chaotic-field case,
on truncating the sum in (3.3) after the second term, one
can obtain the exact expansion of the spectrum for large
|∆| up to ∆−6. Neglecting small terms in this expansion
yields in the first approximation

Ā(∆) ≈ Γ

∆2
+
V 2

0 (ν + Γ ′)
∆4

(|∆| � V0, ν, Γ, Γ
′). (4.14)

The very far wings of the spectrum are the same as in
the absence of the coupling field (see the first term in
Eq. (4.14)). However for moderately large |∆| the second
term in (4.14) may dominate.

The inverse transform (2.4) of equation (4.9) yields an
exponential evolution, except for very short times,

Ūaa(t) = e−[Γ+k̂(Γc)]t
(
t� (ν + Γ ′)−1

)
. (4.15)

In particular, for a field with a Lorentzian bandshape,
equation (4.15) implies

Ūaa(t) = e−[Γ+V 2
0 /(Γc+ν)]t

(
t� (ν + Γ ′)−1

)
. (4.16)

5 Analytical solution

The set of second-order differential equations (2.6) cannot
be solved in a closed form for the most general case. How-
ever equations (2.6) can be solved analytically, on omit-
ting either LΨa or LΨb. Whereas the former case was con-
sidered in detail in [8], the latter case can be treated as
follows.

When Γ ′ or |∆′| is sufficiently large, one can neglect
the term LΨb in equations (2.6b). Then one obtains

Ψb(V) = −iVcΨa/(Γ ′ − i∆′). (5.1)

Inserting equation (5.1) into (2.6a) yields the equation
for Ψa

(i∆− Γ )Ψa −
V 2

Γ ′ − i∆′
Ψa + LΨa = −f(V ). (5.2)

The solution of equation (5.2) is

Ψa(V) =
∫ ∞

0

g(V, t)e−(Γ−i∆)tdt, (5.3)

where g(V, t) obeys the equation

ġ = −[V 2/(Γ ′ − i∆′)]g + Lg (5.4)

with the initial condition g(V, 0) = f(V ). Correspond-
ingly,

Ψ̄a =
∫ ∞

0

ḡ(t)e−(Γ−i∆)tdt, (5.5)

where ḡ(t) =
∫
g(V, t) dV.

The solution of an equation of the form (5.4) was ob-
tained repeatedly [21,22], being

g(V, t) =
β0

πV 2
0 R0(t)

exp
[
νt− S(β0, t)V 2

2V 2
0 R0(t)

]
, (5.6)

where β0 = [1 + 2V 2
0 /ν(Γ ′ − i∆′)]1/2, R0(t) =

β0 coshβ0νt + sinhβ0νt, and S(β0, t) = 2β0 coshβ0νt +
(1 + β2

0) sinhβ0νt. Hence ḡ(t) = 2β0eνt/S(β0, t). Inserting
the latter result into (5.5) and performing the integration
yields finally that the spectrum (2.9) is

Ā(∆) = Re
F (1, 1; 1 + d0;−z0)
Γ − i∆+ (β0 − 1)ν

, (5.7)

where F () is the hypergeometric function [20], d0 =
[Γ̃ + (β0 − 1)ν]/2β0ν, and z0 = (β0 − 1)2/4β0. The valid-
ity conditions of equation (5.7) are shown in Appendix A
to be√

V 2
0 ν � (Γ ′ + |∆′|)

(√
Γ + |∆|+

√
Γ ′ + |∆′|

)
, (5.8a)

ν � Γ ′ + |∆′|. (5.8b)

Equation (5.7) can be simplified in two cases. Using
the hypergeometric-function expansion (15.3.13) in [20]
yields [9]

Ā(∆) = Re
Γ̃ ′

V 2
0

[
1
2

ln
C2

1V
2

0

8νΓ̃ ′
− ψ

(
a0 +

1
2

)]
· (5.9)

Here ψ() is the logarithmic derivative of the Γ -
function[20], a0 = Γ̃ [Γ̃ ′/(8V 2

0 ν)]1/2, and C1 = e−γ ≈ 0.56,
where γ is the Euler constant [20]. The smallness param-
eter of the above expansion is (1 + |d0|)/|z0|. This implies
the validity conditions of equation (5.9) to be

V 2
0 � (Γ + |∆|)(Γ ′ + |∆′|), (5.10a)

V0 �
√
ν(Γ ′ + |∆′|). (5.10b)

When |z0| � 1 + |d0|, which implies, in the frame of the
validity conditions (5.8), the inequality

V 2
0 � ν(Γ ′ + |∆′|), (5.11)

one obtains that F (1, 1; 1 + d0;−z0) ≈ 1 and β0 ≈ 1 +
V 2

0 /νΓ̃
′, equation (5.7) becoming (4.11).

The above results in this section hold for an arbi-
trary ∆c. For the near-resonant case, |∆c| . Γ ′, the va-
lidity conditions (5.8) of equation (5.7) hold for all |∆| if

(a)
√
V 2

0 ν � Γ ′
3/2
, (b) ν � Γ ′. (5.12)

The solution (5.7) and condition (5.12a) were presented
without derivation in [9].

6 Results and discussion

In this section we study different regimes for the EIT and
the evolution function in the near-resonant case (3.7).
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We shall show that the formulas obtained here and in
references [8–10] describe analytically all possible situa-
tions. We begin with defining the boundaries of different
regimes.

Note first that the necessary and sufficient conditions
for the probe absorption to be significantly modified by
the coupling field are equation (3.8) and the relation

V 2
0 & Γν, (6.1)

which is implied by equation (4.10).
The static limit (Sect. 4.1) holds for [8,9]

V 2
0 ν � Γ+Γ

2
−, (6.2)

where Γ+ = max{Γ, Γ ′} and Γ− = min{Γ, Γ ′}. The re-
sults of references [8,9] are valid for (cf. Eq. (5.12))

(a)
√
V 2

0 ν � Γ
3/2
+ , (b) ν � Γ+. (6.3)

The limits of all the possible regimes are shown in
Figure 1. In regions IV and V the broadband-limit re-
sults hold, since boundaries 4 and 5 correspond to condi-
tion (4.7).

Below the new results are discussed in detail, whereas
the previous results are mentioned, for completeness, only
briefly. The numerical results, for simplicity, will be shown
for the case of exactly resonant coupling field, ∆c = 0. In
this case, as follows from equation (3.6), the EIT spec-
trum (2.9) is symmetric with respect to the inversion of
the sign of ∆, which allows one to recast equation (2.4) in
the form

Ūaa(t) =
2
π

Re
∫ ∞

0

Ā(∆)e−i∆td∆. (6.4)

6.1 Relaxationless case

The case when the relaxation constants and detuning
can be neglected, equation (3.5), was studied thoroughly
in [10]. This case is shown below to be realized in re-
gions III and IV (except for far wings, (4.14), which we
shall ignore below). In particular, in region III the spec-
trum has the form (4.2), except for the central part, which
is smoothed, so that the minimum absorption Ā(0) =
1.728ν1/3V

−4/3
0 . The evolution function in region III is

described by equation (4.5) for sufficiently short times,
until the exponential cutoff at t ∼ (V 2

0 ν)−1/3, which is
the characteristic time of the irreversible relaxation [10].
In region IV, the spectrum is a Lorentzian peak, whereas
the evolution function decays exponentially. They are de-
scribed by equations (4.10) and (4.16), where the relax-
ation constants can be neglected (see Ref. [10], Eqs. (4.11,
4.13)). With approaching and traversing boundary 6, ν &
V 2

0 /Γ , one should retain Γ in equations (4.10) and (4.16),
which allows one to describe the transition to the unper-
turbed results with an increase of ν (or a decrease of V0).

Below we present analytical and numerical results for
the EIT and the evolution function, the emphasis be-
ing on regions I, II, and V, where the behaviour signif-
icantly depends on the material relaxation. Analysis in
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Fig. 1. The boundaries of different regimes in the parameter
space for the near-resonance case |∆c| . Γ + Γ ′. (a) Γ ′ � Γ ,
(b) Γ ′ � Γ . Region I, the quasistatic regime; region II, the
ν-dependent regime with strong interference; region III, relax-
ationless, narrowband regime; regions IV and V, the broadband
limit. Boundaries 1–6 are defined by conditions (3.8, 6.2, 6.3a),
V 2

0 = νΓ+, V 2
0 = ν2, and (6.1), respectively.

references [8,9] showed that for Γ � Γ ′ (Γ � Γ ′) in
the above regions the EIT is significantly affected by de-
structive (constructive) interference of the dressed states.
Note that regions II and V exist only in the case of signif-
icantly nonequal relaxation constants [8,9]. In this case a
significant EIT is possible for both strong and weak fields,
V 2

0 & Γ + Γ ′ and ΓΓ ′ . V 2
0 � (Γ + Γ ′)2, respectively.

6.2 Constructive interference (Γ � Γ ′)

6.2.1 EIT spectrum

Consider first the static limit, ν → 0. The analysis of
equation (4.1) [9] shows that the central part of the static
spectrum is a peak with the shape given by a logarithm
of a Lorentzian,

Ā(∆) ≈ Γ ′

2V 2
0

ln
C2

1V
4

0

Γ ′2(Γ 2 +∆2)
(6.5)
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Fig. 2. The probe absorption spectrum Ā(∆) (in units of V −1
0 )

for the constructive interference case, Γ = 10−3Γ ′, ∆c = 0. (a)
The static-limit. Here V0/Γ

′ = 0.2 (curve 1), 1 (curve 2), 10
(curve 3). Dotted line, Γ = Γ ′ = ν = 0 (Eq. (4.2)). (b) ν de-
pendence in the strong-field case. Here V0 = 10Γ ′ and ν/V0 = 0
(curve 1), 10−6 (curve 2), 1.5× 10−3 (curve 3).

(|∆| � min{V0, Γ
′}). For weak (V0 � Γ ′) and intermedi-

ate (V0 ∼ Γ ′) fields the spectrum has a single peak (6.5)
(Fig. 2a, curves 1 and 2), whereas for strong fields (V0 �
Γ ′) equation (6.5) describes a relatively narrow peak be-
tween the two broad Autler-Towns components (Fig. 2a,
curve 3) [9]. The maximum of the peak (6.5) is at ∆ = 0,
and the peak half width at half maximum (HWHM) equals
0.52
√
ΓΓ ′. Except for the central part, the strong-field

spectrum is close to the relaxationless result (4.2) (cf.
curve 3 and the dotted line in Fig. 2a).

The peak (6.5) has a narrower central part and slower
decaying wings than the Lorentzian one. Note that the
static spectrum (4.1) is obtained by averaging the EIT
spectrum with a coherent coupling field, A(ω) = Re(Γ̃ +
V 2/Γ̃ ′)−1, over the distribution (2.5). The spectrum A(ω)
can be shown to be the Autler-Towns doublet for V � Γ ′

and a Lorentzian with the width Γ + V 2Γ ′/(Γ ′2 + ∆2
c)

and shift V 2∆c/(Γ ′
2 +∆2

c) for V � Γ ′. Since the distri-
bution (2.5) is constant for V � V0, the superposition of
the above Lorentzians with V � min{V0, Γ

′} yields the
peak (6.5).

Consider the transformation of the spectrum with the
increase of ν. One can use now the above analytical solu-
tion (5.7). According to condition (5.12), the formula (5.7)
holds in the regions I, II, and V in Figure 1a (note that
Eq. (5.12a) defines boundary 3 in Fig. 1a). One can show
with the help of equation (5.9) [9] that the static-limit re-

sults hold in region I, i.e., for V 2
0 ν � Γ 2Γ ′ (see Eq. (6.2)

and boundary 2 in Fig. 1a).
In region II the peak height decreases with ν,

Ā(∆) =
Γ ′

2V 2
0

ln
2V 2

0

Γ ′ν

(
|∆| �

√
V 2

0 ν/Γ
′
)
, (6.6)

whereas outside the vicinity of the maximum (for ∆2 �
V 2

0 ν/Γ
′) the spectral shape remains approximately qua-

sistatic. Thus, in the present case the transparency in-
creases with the increase of the coupling-field band-
width [9]. Further transformation of the spectrum with
ν occurs differently for the weak- and strong-field cases.

In the weak-field case, i.e., below the horizontal axis
in Figure 1a, the peak height diminishes with ν accord-
ing to (6.6) in the interval Γ 2Γ ′/V 2

0 � ν � V 2
0 /Γ

′ (re-
gion II). When the latter inequality is inverted, the broad-
band limit occurs (cf. Eq. (4.7)) and the spectrum be-
comes Lorentzian, equations (4.9, 4.13). In the interval
V 2

0 /Γ
′ � ν � Γ ′ (region V in Fig. 1a) the spectrum

practically does not depend on ν, being described by equa-
tion (4.11). The result (4.11) holds also for a monochro-
matic coupling field which has the same average intensity
as the chaotic field. In other words, in the above region the
random fluctuations of the field do not affect the spectrum.
For ν � Γ ′ the spectrum is given by (4.10), as discussed
above for region IV. The dependence of the peak hight
on ν for a weak coupling field is shown in Figure 3a. The
transformation of the spectrum with ν for the weak-field
case was plotted in [7], Figure 6.

The present treatment has some overlap with
reference [7], where the path-integral method was em-
ployed to study the constructive-interference, weak-
field case. In particular, the result similar to equa-
tions (4.9, 4.13) was obtained ([7], Eqs. (39, 40)). Note,
however, that many of the present results, including equa-
tions (4.9, 4.13), are shown in Section 4 to hold for a more
general case than the chaotic-field model considered in
reference [7].

The closed formulas (4.12) and (5.7) completely de-
scribe the EIT for a weak-field case, since their validity
domains (4.7) and (5.12), respectively, overlap in region V
(V 2

0 /Γ
′ � ν � Γ ′), where the both results approximately

reduce to equation (4.11). Alternatively, the above discus-
sion implies that in the weak-field case the EIT spectrum
can be described for all values of parameters by a single
formula (5.7), where the substitution

Γ ′ → Γ ′ + ν (6.7)

is performed. This is illustrated by Figure 3a, where the
plots calculated by the continued fraction (3.6) and by the
result (5.7, 6.7) coincide.

In the strong-field case, i.e., above the horizontal axis
in Figure 1a, the transformation of the central part of
the spectrum with ν is shown in Figure 2b (curve 1 in
Fig. 2b is the central part of curve 3 in Fig. 2a). The
central peak decreases with ν according to (6.6) in the in-
terval Γ 2Γ ′/V 2

0 � ν � Γ ′3/V 2
0 (region II), as illustrated

by Figure 2b, curve 2, and Figure 3b, the dotted line. The
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Fig. 3. Scaled resonant absorption V0Ā(0) as a function of
scaled bandwidth in a linear-log (a) and log-log (b) scales for
the constructive-interference case: Γ = 10−3Γ ′, ∆c = 0. (a)
Weak-field case, Γ ′ = 10V0. Solid line, the calculation by the
continued fraction (3.6) and the result (5.7, 6.7); dotted line,
equation (5.7); dashed line, the result (4.12). (b) Strong-field
case, Γ ′ = 0.1V0. Solid line, numerical solution by (3.6); dotted
line, equation (5.7); dashed line, solution with Γ = Γ ′ = 0 [10].

peak disappears at ν ∼ Γ ′3/V 2
0 (boundary 3 in Fig. 1a), so

that only the Autler-Towns doublet remains. In regions III
and IV (Fig. 1a) the lineshape is close to that obtained
in the case (3.5) [10], as mentioned in Section (6.1). The
dependence of the peak hight on ν for a strong coupling
field is shown in Figure 3b.

As follows from the above discussion, in the strong-
field case the transparency is maximal for ν ∼
ν0 = Γ ′3/V 2

0 . Inserting the above estimation into
equation (6.6), one obtains that the minimal absorption
coefficient

Āmin = Ā(0)
∣∣
ν∼ν0

≈ Γ ′

V 2
0

ln
V 2

0

Γ ′2
· (6.8)

This value is larger by the factor ln(V 2
0 /Γ

′2) than the
absorption coefficient for a monochromatic coupling field
of the same average intensity as the chaotic field. In con-
trast, recall that in the weak-field case the maximal trans-
parency (achieved in region V) equals that induced by a
monochromatic coupling field of the same average inten-
sity.

6.2.2 TLS evolution

As follows from equation (2.8), the average evolution func-
tion Ūaa(t) can be obtained by the inverse Laplace trans-
form of ˆ̄Uaa(s) = Ψ̄a

∣∣
∆=is

. Inserting equation (5.5) into
the latter equality yields

ˆ̄Uaa(s) =
∫ ∞

0

q0(s, t)e−stdt, (6.9)

where q0(s, t) = ḡ(t)|∆=is e−Γt.
In the weak field case (the region below the horizontal

axis in Fig. 1a), as shown below, one can set Γ ′ + s ≈ Γ ′

in ˆ̄Uaa(s), equation (6.9). Then ˆ̄Uaa(s) becomes a Laplace
transform of q0(0, t) = Ūaa(t), yielding

Ūaa(t) =
4β′0e(ν−Γ )t

2β′0 coshβ′0νt+ (1 + β′0
2) sinhβ′0νt

, (6.10)

where β′0 = (1 + 2V 2
0 /νΓc)1/2. The short- and long-time

asymptotics of equation (6.10) are

Ūaa(t) ≈ Ū st
aa(t) ≈ e−Γt

1 + V 2
0 t/Γc

, |β′0|νt� 1, (6.11a)

Ūaa(t) ≈ 4β′0e−[(β′0−1)ν+Γ ]t

(1 + β′0)2
, e|β

′
0|νt � 1. (6.11b)

The present approximation holds for Γ ′t � 1. It is valid
practically for all times, provided Ūaa(1/Γ ′) ≈ 1, which is
true for a weak field, V0 � Γ ′ (see Eq. (6.11a)). Note that
equation (6.10) is similar to equation (34) in [7].

In the weak-field case, the static-limit evolution func-
tion (4.4) approximately equals equation (6.11a). When
the bandwidth ν is so small that |β0|ν � Γ , which occurs
in region I in Figure 1a, the static result (6.11a) describes
actually the whole evolution. Outside region I one can ne-
glect Γ in equations (6.10) and (6.11). In region II the
static evolution function (6.11a) has a ν-dependent expo-
nential cutoff at long times, as shown by equation (6.11b).
In regions IV and V the broadband-limit result (4.16) is
a good approximation to equation (6.10). The discussion
in Section 6.2.1 implies that equation (6.10) with the sub-
stitution (6.7) determines the evolution function in the
whole domain of the weak field.

Consider the strong-field case, V0 � Γ ′ (the upper
half plane in Fig. 1a). In the static limit, as follows from
the analysis of equation (4.4), the evolution function for
Γ ′t� 1 is given by equation (4.5), whereas

Ū st
aa(t) ≈

(
Γc − Γ
V 2

0 t
− 1
V 2

0 t
2

)
e−Γt (2Γ ′t� 1). (6.12)

For ∆c = 0, the function Ū st
aa(t) changes the sign twice

(see Fig. 4, curve 1).
According to equations (6.11a, 6.12), Ū st

aa(t) ≈
Γce−Γt/V 2

0 t for long times. This behaviour can be traced
to the fact that the decay of Uaa(t), equation (4.3),
slows down with the decrease of V , so that Uaa(t) ≈
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Fig. 4. The evolution function Ūaa(t) for the constructive
interference, strong-field case, Γ = 10−4V0, Γ ′ = 0.1V0.
Here ∆c = 0; ν/V0 = 0 (curve 1), 10−6 (curves 2 and 4),
0.0015 (curve 3). Curve 4, equations (6.13, 6.15); curve 5,
equation (4.5) (i.e., Γ = Γ ′ = ν = 0). (a) Short times. (b) Long
times.

e−(Γ+V 2/Γc)t for V � Γ ′ and t � 1/Γ ′. As a result, for
t � Γ ′/V 2

0 , 1/Γ ′, one can use the latter expression for
Uaa(t) and set f(V) ≈ f(0) in Ū st

aa(t) =
∫
Uaa(t)f(V)dV,

which yields the above long-time result for Ū st
aa(t).

Consider the effects of temporal coupling-field fluctua-
tions on the evolution in the strong-field case. Regions III
and IV, corresponding to the regime (3.5), were studied
in [10]. Here we consider the time dependence in regions I
and II. As in the weak-field case, in regions I and II the
most part of the evolution occurs according to the static
law, whereas the effect of the temporal fluctuations is
to accelerate the decay at long times. The behavior at
t� Γ

′−1 can be described roughly by equation (6.10). A
better approximation (Appendix B) yields

Ūaa(t) ≈ q0(σ0, t) (t� Γ
′−1), (6.13)

where σ0 satisfies the equation

σ0 = −[β0(σ0)− 1]ν − Γ ≡ h(σ0). (6.14)

An approximate solution of equation (6.14) is
(Appendix B)

σ0 ≈ −(β′0 − 1)ν − Γ. (6.15)

The evolution functions corresponding to the line-
shapes 1–3 in Figure 2b are shown in Figure 4, curves 1–3,
respectively. As follows from Figure 4, the evolution func-
tion Ūaa(t) in region II (curve 2) is very close to the static
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Fig. 5. The probe absorption spectrum Ā(∆) (in units of V −1
0 )

as a function of the probe detuning ∆ (in units of V0) for the
destructive interference, strong-field case, Γ = 10−2V0, Γ ′ =
10−4V0. Here ∆c = 0; ν/V0 = 0 (curve 1), 10−8 (curve 2), 10−6

(curve 3). Dotted curve, Γ = Γ ′ = ν = 0 (Eq. (4.2)).

law (4.4) (curve 1), except for long times, where the ef-
fect of temporal fluctuations becomes significant. The lat-
ter limit is described fairly well by the result (6.13, 6.15)
(curve 4). Curve 3 in Figure 4 shows the TLS evolution
at the transition between regions II and III, V 2

0 ν ∼ Γ ′3.
The comparison of curves 2 and 3 shows that the decay
accelerates with the increase of ν, which is expected in re-
gions II and III. Figure 4 also shows, for comparison, the
function (4.5) (curve 5).

6.3 Destructive interference (Γ � Γ ′)

6.3.1 EIT spectrum

In the destructive-interference case the EIT lineshape was
found in [8] to be

Ā(∆) =
Γ

Γ 2 +∆2
− V 2

0 Re
F (2, 1; 1 + d;−z)
Γ̃ 2[Γ̃ ′ + (2β − 1)ν]

, (6.16)

where z = (β − 1)2/(4β), d = [(2β − 1)ν + Γ̃ ′]/(2βν),

and β =
√

1 + 2V 2
0 /(νΓ̃ ). Equation (6.16) holds under

condition (6.3) with Γ+ = Γ [8], i.e., in the sector between
line 3 and the negative vertical half axis (Fig. 1b), which
comprises regions I and II.

The lineshape (6.16) was studied in detail in [8]. Ex-
pression (6.16) describes completely the weak-field case,
V0 � Γ , and partially the strong-field case, V0 � Γ . In re-
gions I and II, the spectrum has a minimum at ∆ ≈ −∆c,
which is significantly affected by destructive interference.
For

√
V 2

0 ν � Γ ′
√
Γ (region I in Fig. 1b) the lineshape

is approximately static, whereas in region II the absorp-
tion coefficient at the minimum is proportional to

√
ν.

Figure 5 shows the strong-field EIT lineshapes (near the
minimum) in regions I, II, and at the transition between
regions II and III (curves 1–3, respectively). For compar-
ison, the spectrum (4.2) is also shown (the dotted curve).

The absorption coefficient at the probe resonance for
a strong coupling field is plotted versus ν in Figure 6 (the
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destructive interference, strong-field case, Γ = 10−2V0, Γ ′ =
10−4V0, ∆c = 0. Solid line, numerical solution by (3.6); dot-
dashed line, equation (6.16); dashed line, case Γ = Γ ′ = 0 [10].

solid line). For comparison, Figure 6 shows also the plots
of equation (6.16) (the dot-dashed line) and the result cor-
responding to the case (3.5) [10] (the dashed line). In par-
ticular, Figure 6 demonstrates the crossover at ν ∼ Γ 3/V 2

0

between the ν1/2 and ν1/3 scalings pertinent, respectively,
to regions II and III in Figure 1b. The transition between
regions III and IV (which occurs at V0 ∼ ν) is rather
sharp, whereas for larger ν (region IV and beyond it) the
broadband-limit result (4.10) holds, as discussed above.

6.3.2 TLS evolution

We turn now to the time domain. Using equation (6.11)
of [8] (with a misprint corrected: the factor Γ̃−1 should
be inserted before the integral), one obtains, similarly to
equation (6.9),

ˆ̄Uaa(s) =
1

Γ + s
−
∫ ∞

0

q(s, t)e−stdt. (6.17)

Here q(s, t) = 4V 2
0 β

2(s)e(ν−Γc)t/[(Γ+s)S(β(s), t)]2, where
β(s) = [1 + 2V 2

0 /ν(Γ + s)]1/2.
In the weak-field case, the evolution function can be

found as follows. For short times, t � Γ/V 2
0 , 1/ν, one

obtains that e(ν−Γc)t ≈ 1 and S(β(s), t) ≈ 2β(s). This
yields q(s, t) ≈ V 2

0 /(Γ + s)2 and hence the second term
on the right-hand side (rhs) of equation (6.17) is approxi-
mately −V 2

0 /s(Γ + s)2. The inverse Laplace transform of
equation (6.17) in this case can be performed readily. On
the other hand, for t � 1/Γ the inverse Laplace trans-
form of the first term on the rhs of equation (6.17), e−Γt,
practically vanishes, whereas in the second term one can
set s ≈ 0, yielding Ūaa(t) ≈ −q(0, t). The interpolation
formula which incorporates the both limits is

Ūaa(t) = (1 + V 2
0 /Γ

2 + V 2
0 t/Γ )e−Γt − q(0, t). (6.18)

For a weak field, V 2
0 � Γ 2, with ν � Γ , the above limits

overlap, which means that equation (6.18) holds for all
times.

According to equation (6.18), the evolution function
first decreases fast (with the rate Γ ) from 1 to −V 2

0 /Γ
2

and then slowly decays to zero. Equation (6.18) has the
following short- and long-time behavior,

Ūaa(t) ≈ Ū st
aa(t) ≈ (1 + V 2

0 /Γ
2 + V 2

0 t/Γ )e−Γt

−V 2
0 e−Γct/(Γ + V 2

0 t)
2, β′νt� 1, (6.19a)

Ūaa(t) ≈ −16V 2
0 β
′2e−(2β′−1)νt−Γct

Γ 2(1 + β′)4
, eβ

′νt � 1, (6.19b)

where β′ = (1 + 2V 2
0 /νΓ )1/2. Equation (6.19a) describes

the static decay in the weak-field case. According to equa-
tion (6.19a), for t� Γ/V 2

0

Ū st
aa(t) ≈ −e−Γct/(V0t)2, (6.20)

i.e., for long times the evolution function decays as −t−2

until the exponential cutoff at t ∼ Γ ′−1. The static re-
sult (6.19a) is responsible practically for the whole evolu-
tion in region I (Γ ′ � β′ν). In region II the static −t−2

decay has a ν-dependent exponential cutoff described by
equation (6.19b).

Consider now the strong-field case. In the static
limit, equation (4.4) implies that Ū st

aa(t) is given by
equation (4.5) for t � Γ−1 and by equation (6.20) for
t � Γ−1. As in the weak-field case, in region II the TLS
evolution is sensitive to ν only at long times. The approx-
imate formula for the long-time behavior in regions I and
II can be obtained, as follows. For t � Γ−1 the inverse
transform of the first term on the rhs of equation (6.17),
e−Γt, is negligible. The inverse transform of the second
term for t� Γ−1 is performed analogously to the deriva-
tion of equation (6.13), yielding

Ūaa(t) ≈ −q(σ, t) (t� Γ−1), (6.21a)

where σ satisfies the equation σ = −[2β(σ)− 1]ν − Γc. In
the first approximation one obtains

σ ≈ −(2β′ − 1)ν − Γc. (6.21b)

The plots of Ūaa(t) in regions I and II (Fig. 1b) for the
strong-field case are shown in Figure 7, curves 1 and 2, re-
spectively. These plots are obtained by the Fourier trans-
form (6.4) of the spectra shown in Figure 5 (curves 1
and 2). The main part of the static evolution (curve 1)
coincides with the relaxationless static result (4.5) (the
dashed line), whereas for long times curve 1 coincides with
the dotted line (Eq. (6.20)). The evolution function in re-
gion II (curve 2) is close to the static result (curve 1),
except for very long times where temporal fluctuations re-
sult in an acceleration of the decay. The latter stage is
described fairly well by equation (6.21) (the dot-dashed
line in Fig. 7).

6.4 Comparable relaxation constants

In the case Γ ∼ Γ ′, the boundaries of different regimes
can be obtained from Figure 1b by moving boundaries 1
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Fig. 7. The evolution function in a logarithmic scale:
log10 |Ūaa(t)| versus log10(V0t), for the destructive interference,
strong-field case, Γ = 10−2V0, Γ ′ = 10−4V0, ∆c = 0. Here
ν/V0 = 0 (solid curve 1), 10−8 (solid curve 2). Dashed line,
equation (4.5); dotted line, equation (6.20); dot-dashed line,
equation (6.21).

and 2 up to their merging with the negative abscissa axis
and boundary 3, respectively. This implies that region II
disappears, whereas boundary 3 (V 2

0 ν = Γ 3) separates
regions I and III. Now a significant EIT can be produced
only by a strong coupling field, V0 � Γ . Henceforth, we
focus, for simplicity, on the case Γ = Γ ′, ∆c = 0.

In the static limit, as follows from equation (4.4), the
evolution function is given by the product of equation (4.5)
and the factor e−Γt, which provides a cutoff at long t.

Correspondingly, in the static limit the spectrum is
close to equation (4.2), except for a narrow vicinity of
∆ = 0 where the lineshape is smoothed. More specifically,
as follows from equation (4.1), for |∆| � V0 the lineshape
is [8,9]

Ā(∆) =
1
V 2

0

(
Γ ln

C1V
2

0

Γ 2 +∆2
+ 2∆ arctan

∆

Γ

)
· (6.22)

The absorption is minimal at ∆ = 0, where A(0) =
(Γ/V 2

0 ) ln(C1V
2

0 /Γ
2), which is greater by the logarithmic

factor than the absorption coefficient with a monochro-
matic coupling field of the same average intensity.

The maximum EIT, given by Ā(0), is plotted versus ν
in Figure 8. In accordance with the above discussion,
the increase of ν leads to the transition from the ν-
independent static limit to the relaxationless regime (the
dashed line) and then to the unperturbed case (a negligi-
ble coupling field).

7 Conclusion

Above we have studied the EIT and the average (reduced)
evolution of a TLS under a (near-)resonant chaotic field.
The general solution in the form of a continued fraction
has been obtained and used for numerical calculations.
Moreover, a number of analytical results for special cases
have been derived. The present results, together with the
previous ones [8–10], describe analytically all the regimes.
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Fig. 8. Scaled resonant absorption versus scaled bandwidth
in a logarithmic scale: log10[V0Ā(0)] versus log10(ν/V0), for
∆c = 0. Solid line, Γ = Γ ′ = 0.01V0; dashed line, Γ = Γ ′ =
0 [10].

Only the transition region V 2
0 ν ∼ (Γ +Γ ′)3 in the strong-

field case, V0 & Γ + Γ ′, cannot be described analytically.
The results have been verified by numerical calculations.
As a result, a comprehensive picture of the EIT and the
TLS evolution have been obtained.

The results of the broadband limit (the part of the
parameter space to the right of boundaries 4 and 5 in
Figure 1, including regions IV and V) have been shown
to hold for a rather general class of stochastic fields. The
quasistatic results (region I) are also rather general, as
mentioned above. In contrast, the behavior in regions II
and III (as well as the boundary between regions I and II)
significantly depends on the specific model of the stochas-
tic field [8,10].

In the constructive-interference case, the counterintu-
itive fact has been obtained that the EIT increases with
the field bandwidth for sufficiently small bandwidths2
(Sect. 6.2). As a result, in the strong-field case the EIT
is maximal for a certain optimal bandwidth. The minimal
absorption coefficient is greater than that for a monochro-
matic field of the same average intensity, the discrepancy
increasing with the field.

In contrast, in the weak-field case there is a range of
values of ν, where the EIT is maximal. Moreover, in this
region the effect of the field fluctuations on the spectrum
and the evolution function is negligible. This regime per-
tains to the broadband limit and therefore should hold
for stochastic fields more general than the chaotic field, as
discussed above.

The present research was supported by the Ministry of Ab-
sorption via the Center for Absorption of Scientists.

Appendix A: Validity conditions
of equation (5.7)

The expressions (5.3) and (5.1) are the zero-order solu-
tions, Ψ (0)

a and Ψ
(0)
b , respectively, of equations (2.6). To

2 For the strong-field case, this fact was first revealed in [9].
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find corrections to these solutions, we cast equation (2.6b)
in the integral form,

−Γ̃ ′Ψb − iVcΨa = iΓ̃ ′
∫

dV′V ′cΨa(V′)F (V′,V) − iVcΨa,

(A.1)

where F (V′,V) =
∫∞

0 dtf(V′; V, t)e−Γ̃
′t. Here

f(V′; V, t) is the conditional probability of the ran-
dom process V(t) (see Ref. [8], Eqs. (B4, B5)).

The zero-order solution is obtained when the rhs of
equation (A.1) vanishes. The functions Ψ (1)

a(b)(V), involving
the first-order corrections, appear on the left-hand sides
of the set of equations (2.6a, A.1), on inserting Ψa ≈ Ψ (0)

a

on the rhs of equation (A.1). Then solving equation (A.1)
for Ψ (1)

b (V) and inserting the result into equation (2.6a)
yields

− Γ̃ Ψ (1)
a − V 2

Γ̃ ′
Ψ (1)
a + LΨ (1)

a = −f(V )

+ V ∗c

∫
dV′V ′cΨ

(0)
a (V′)F (V′,V)− V 2

Γ̃ ′
Ψ (0)
a . (A.2)

Let us now estimate Ψ
(0)
a (V), equation (5.3). Equa-

tion (5.6) implies that

g(V, t) ≈ f(V )e−V
2t/Γ̃ ′ , |β0|νt� 1, (A.3a)

g(V, t) ≈ f(V ) exp[−β0νt− (β0 − 1)V 2/2V 2
0 ], (A.3b)

e|β0|νt � 1.

Using equations (A.3) in equation (5.3), one can obtain
that Ψ (0)

a (V) ∼ f(V )/(Γ̃ + β0ν) for V 2 . |β0νΓ̃
′| and

Ψ
(0)
a (V) ≈ f(V )Γ̃ ′/(V 2 + Γ̃ Γ̃ ′) for V 2 � |β0νΓ̃

′|. This
can be recast as follows,

|Ψ (0)
a (V)| ∼ f(V )|Γ̃ ′|/V 2

1 , V � V1

Ψ (0)
a (V) ≈ f(V )Γ̃ ′/V 2, V � V1, (A.4)

where V1 is the width of Ψ (0)
a (V)/f(V ) as a function of V ,

V 2
1 = |β0νΓ̃

′|+ |Γ̃ Γ̃ ′|.
As follows from the form of f(V′; V, t) [8], in the

case (5.8b) F (V′,V) as a function of V′ is a bell-like

function centered at V with the width VF =
√
V 2

0 ν/|Γ̃ ′|.
When VF � V1, one can approximate F (V′,V) ≈
δ(V − V′)/Γ̃ ′ in the second term on the rhs of equa-
tion (A.2). This implies that the modulus of the sum of
the last two terms on the rhs of equation (A.2) is much
less than V 2|Ψ (0)

a (V)/Γ̃ ′| ∼ f(V ) (the latter relation fol-
lows from (A.4)). The above inequality means that equa-
tion (A.2) approximately coincides with (5.2), which yields
in turn that Ψ (1)

a (V) ≈ Ψ
(0)
a (V). Note that the condi-

tion VF � V1 is equivalent to equation (5.8a). Thus we
have proved the validity of equation (5.7) under the con-
ditions (5.8).

Appendix B: Approximate inverse transform
of equation (6.9)

The inverse Laplace transform of the evolution function is
given by

Ūaa(t) =
1

2π

∫ ∞
−∞

ˆ̄Uaa(σ + iλ)e(σ+iλ)tdλ, (B.1)

where σ is such that the integration contour in
equation (B.1) is to the right of all the singularities of
ˆ̄Uaa(s). We look for the minimal σ, i.e., such σ that the
integration contour is as close as possible to the right-
ist pole of ˆ̄Uaa(s). Taking into account that q0(s, t) ∼
e−[β0(s)−1]νt−Γt for t→∞, where β0(s) = [1+2V 2

0 /ν(Γc+
s)]1/2, one observes that the minimal s = σ0, for which the
integral in (6.9) converges, satisfies the equation (6.14).
For t � Γ

′−1 and σ = σ0, the main contribution to
the integral in equation (B.1) is obtained from λ such
that |λ| � Γ ′ ≈ Γ ′ + σ0. For such λ, in equation (6.9)
q0(s = σ0 +iλ, t) ≈ q0(σ0, t), and hence (6.9) has the form
of the Laplace transform of q0(σ0, t). This means that the
inverse transform will yield equation (6.13).

On expanding h(σ0), equation (6.14), in powers of
σ0, one obtains that in the second approximation σ0 =
h(0)[1 + h′(0)], where h′(σ) = dh/dσ. One can show that
h′(0) ∼ (V 2

0 ν/Γ
′3)1/2 � 1. Therefore σ0 ≈ h(0), yielding

equation (6.15).
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